SOLUTION OF INHOMOGENEOUS HEAT-TRANSFER
LINES USING THE METHOD OF THE THEORY

OF CHAINS
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A derivation is given and finite expressions are presented for the A-parameters for inhomo-
geneous heat lines; examples are given of a computation using the formulas obtained,

Let a heat line be a heat object in which the change in temperature is determined completely by its
change along one radius in the direction of heat propagation. Such heat objects as a wall, a cylinder, a
sphere can be considered as heat lines, An inhomogeneous heat line is considered to be one for which at
least one of the parameters (heat conductivity, volume specific heat, or cross-sectional area) is a function
of the line coordinates, In the most general case all three parameters can vary simultaneously and indepen-
dently along the line., The cylinder and sphere are numbered among inhomogeneous systems because such
a parameter as the cross section varies along the radius in such bodies.

The purpose of the present paper is to show that it is possible to obtain solutions in general form
(independently for the temperature and the heat flux) for an inhomogeneous heat line with any given boundary
conditions written in the so-called A-parameters, Insofar as we know, A-parameters are presently ob-
tained and used only for homogeneous heat lines in the heat-engineering literature [1].

Indubitably, the expressions obtained for A-parameters for inhomogeneous heat lines can also be used
to compute inhomogeneous acoustic lines as well as other unidirectional transfer processes such as mass
transfer due to concentration gradient, etec.

1t is convenient to use the methods of chain theory in seeking the solutions of one-dimensional problems
of heat kinetics., With their aid it is extremely simple to find the steady reaction on an applied harmonic
effect, Quite special parameters, called waves, are used in this theory: y = a + i3 is the propagation con-
stant (where ¢ is the damping coefficient, and g the phase coefficient), and p is the wave resistance expres-
sed in terms of the linear line parameters cj = cy(x)S(x) and r; = 1/A(x)S(x) as follows:

p(0) = Viacyr;; o) = ]/ I

o]

It is clear that for inhomogeneous heat lines both the propagation constant and wave resistance vary
continuously along the coordinate x,

Chain theory is used together with the methods of solving differential equations but it also has ad-
vantages of its own, Chain theory methods are simpler in mathematical respects, and much more graphic
when considering complex systems, Chain theory is used to synthesize new systems corresponding to
given requirements (specified energy attenuation, specified lag time) and to analyze the solutions obtained,

The method we selected for seeking the A-parameters of an inhomogeneous heat line is to partition the
selected line into n sections, to write the A-parameters for each section by considering the parameters of
each section to be concentrated, and to find the exact values of the A-parameters of the whole line, which
are obtained in the limit when the number of sections becomes infinite,
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Let us find the A-parameters of an inhomogeneous heat line considered as a quadripole, when the li-

near parameters c; and rj are arbitrary, but vary continuously along the line,

After the partition, if the total length of the line is I, the length of one section is written as

Ax:—l.
n

In the case of a sufficiently small length Ax, we have for the section k
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Let us replace the sum by an integral
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and the exact expressions for the A-parameters are
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where
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It is seen from the expressions presented that the A-parameters are represented as power series in
the Laplace operator the coefficients of which are given as integrals of a function of the linear heat resis-
tance and the linear specific heat, Any system function of an inhomogeneous heat line, closed by means of
an arbitrary resistance, can be determined by using A-parameters.

The correctness of the expressions representing the A-parameters is confirmed by the solutions we
obtained on their basis for exponential and linear heat lines heat-insulated from the end (i.e., lines for
which both the linear heat resistance and the linear specific heat vary along the line by an exponential and a
linear law, respectively). The solutions obtained agreed with solutions existing in the literature,

Expressions for the A-parameters for inhomogeneous heat lines written in terms of the generalized
wave parameters of a line, mentioned at the beginning, could also be obtained,

In order to demonstrate theultilization of the formulas obtained, let us determine the value of the
parameter A for a wall, a cylinder, and a sphere,

For the case of a homogeneous line (wall), the value of the A~parameter is obtained at once (the
length of the line is assumed equal to one):

hed n
A= S(i‘%’%‘l- = chV seiyrre = che, (14)
{3
=

where z = Vscyy/A.

In the case of the assignment of a thermal perturbation on the surface of a cylinder (or sphere),
knowledge of the A-parameter is completely sufficient for the determination of the temperature at any point
along the radius of the body under consideration.

Let ug evaluate the A-parameter for a cylinder the maximum radius of which is taken equal to one:

A=1l+as+as+ ...,

Xy

1

{
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0

Since the beginning of the heat line is the cylinder surface, then the coordinate considered along the
line will pass through the following values: 1, X(, Xg,...,0, Then

Xa

0
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Proceeding in the same manner, we obtain

" 6
a,st= %% and a,s® = (—?%2!——;2— etc. (15)

In other words, A =Iyz), where Iy(z) is the zero-order Bessel function of argument z,
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Now, let us determine the parameter A for a sphere

0 Xz
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Proceeding in the same manner we obtain

24 22r 220 shz
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Tt must be noted that the exact solution of the heat conduction differential equation is not sought for
any inhomogeneous heat lines but only for those for which the linear heat resistance and linear volume
specific heat functions are interrelated in a definite manner. These constraints are absent in the method
proposed,

It is evident that knowledge of the A-parameters of inhomogeneous heat lines permits significant ex-
pansion of the circle of problems solved by the use of quadrupoles, which is limited at this time to the analy-
sis of homogeneous heat lines {1].

NOTATION
X is the coordinate, m;
S is the cross-sectional area, 'mz;
s is the Laplace operator;
w is the angular frequency, rad/sec;
A is the coefficient of heat conduction, W/m - °C;
¢y is the volume specific heat, J/m®.°C;
o] is the linear specific heat, J/m-°C;
1 is the linear heat resistance, °C/W.m,
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