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A derivation is given and finite expressions are  presented for  the A-pa rame te r s  for  inhomo- 
geneous heat lines ; examples are  given of a computation using the formulas  obtained. 

Le t  a heat line be a heat object in which the change in tempera ture  is determined completely by its 
change along one radius in the direction of heat propagation. Such heat objects as a wall, a cylinder,  a 
sphere  can be considered as heat l ines.  An in_homogeneous heat line is considered to be one for  which at 
leas t  one of the pa ramete r s  (heat conductivity, volume specific heat,  or c ross - sec t iona l  area) is a function 
of the line coordinates .  In the mos t  general  case  all th ree  pa ramete r s  can vary  simultaneously and indepen- 
dently along the line. The cylinder and sphere are  numbered among inhomogeneous sys tems because such 
a pa ramete r  as the c ross  section varies along the radius in such bodies.  

The purpose of the present  paper  is to show that it is possible to obtain solutions in general fo rm 
(independently for  the t empera tu re  and the heat  flux) for  an inhomogeneous heat line with any given boundary 
conditions written in the so-ca l led  A - p a r a m e t e r s .  Insofar  as we know, A-pa rame te r s  are  present ly  ob- 
tained and used only for  homogeneous heat lines in the heat -engineer ing l i te ra ture  [1]. 

Indubitably, the expressions obtained for  A-pa rame te r s  fo r  inhomogeneous heat lines can also be used 
to compute inhomogeneous acoustic lines as well as other unidirectional t r ans fe r  p rocesses  such as mass  
t r ans fe r  due to concentrat ion gradient,  etc. 

It is convenient to use the methods of chain theory  in seeking the solutions of one-dimensional problems 
of heat kinetics.  With their  aid it is extremely simple to find the steady react ion on an applied harmonic  
effect. Quite special pa ramete r s ,  called waves, are  used in this theory:  7 = a + i6 is the propagation con-  
stant (where a is the damping coefficient,  and/~ the phase coefficient), and p is the wave res i s t ance  expres -  
sed in t e rms  of the l inear  line pa ramete r s  c l = Cv(X)S(x) and r I = 1/k(x)S(x) as follows: 

p(x) = l /  rz 7(x)= Vi~czrl; 
V ic0c~ 

It is c lear  that fo r  inhomogeneous heat lines both the propagation constant and wave res is tance  vary  

continuously along the coordinate x. 

Chain theory  is used together with the methods of solving differential equations but it also has ad- 
vantages of its own. Chain theory  methods are  s impler  in mathematical  respec t s ,  and much more  graphic 
when considering complex sys t ems .  Chain theory  is used to synthesize new sys tems corresponding to 
given requirements  (specified energy attenuation, specified lag time) and to analyze the solutions obtained. 

The method we selected for  seeking the A-pa rame te r s  of an inhomogeneous heat line is to parti t ion the 
selected l ine into n sections,  to write the A-pa rame te r s  fo r  each section by considering the pa ramete r s  of 
each section to be concentrated,  and to find the exact values of the A-pa rame te r s  of the whole line, which 
a re  obtained in the l imit  when the number of sections becomes infinite. 
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Let us find the A-parameters of an inhomogeneous heat line considered as a quadripole, when the li- 

near parameters e I and r l are arbitrary, but vary continuously along the line. 

Af te r  the  'par t i t ion,  ff the  to ta l  l ength  of the  l ine  is  l, the  l eng th  of one section, is  w r i t t e n  as 

l 
A x = q .  

n 

In the  c a s e  of a su f f i c i en t ly  s m a l l  length  Ax, we have  f o r  the  s ec t ion  k 

[Ak Bk 
C h Dh]-~[~czhhx rzhA~]~J+AxXh , (1) 

r / k =  rl(kAx); ClkC/.(k~x); k = j ,  2 . . . . .  n ,  

0 1 ' sclk 

The  A - p a r a m e t e r s  of the  whole  l ine  n ~ co (~x ~ 0); 

[ Ac DB ] = lim f i  ( J + l Xk ) = lim [ J + I ~ ---n n.| --n 
k ~ l  k ~ l  

+ X~X i + ... X~,X~,... Xi~ 
i < ] i~ < ~ . , .  < t m 

L e t  us r e p l a c e  t he  s u m  by  an i n t eg ra l  

• J + .I x (x) ax + .( .t x (x,) x(x2) d~lez~ + . . .  
o 0 o 

l xnxn. I X 2 

0 0 0 0 

(2) 

(3) 

But  

x ( x d X  ( x O . . . x  (x~,)=s, ,  [r z (xO c z ( x ~ ) . . . r  z (x~,_O c z (x , , )  o] 
t o  c z (x~) r z (x~) . . .  c z(x~._ 0 q (x , . ) j  ' 

a = l ,  2, . . . ,  

X (xl)X (xo) . . . X(x2n,.1) =sn [ 0 rl (Xl)Cl (X2) ... cl ()Qn)rZ (X~n+l~ ] 
�9 ~ scz (xl) q (x.) . . .  r l ( x J  c z (X2,~+1) ' 

n - - 0 ,  1, 2 . . . .  

and the  exac t  e x p r e s s i o n s  f o r  the  A - p a r a m e t e r s  a r e  

(4) 

(5) 

A =  1 + ~  a,~s", 
n = l  

2 B,,= .f rz (x) dx + b J ,  
0 n = l  

x.,n 
0 n = l  

D= 1+ ~ d~s '~, 
n = l  

(6) 

(7) 

(8) 

(9) 
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where 

l X2n X 2 n _  i x~ xa 

0 0 0 0 

I X2nq_ 1 X2n xs x ,  

0 0 0 0 0 

l X2nq_ 1 X2n x~ x~ 

0 0 0 0 0 

1 X2n X 2 n _  I xs  x ,  

dn ~ S rz(xg"") ~ Cti(x~"") S r/(x=n-~) " "SrZ (xz) Sc,(x')dxtclx'"'dx~n" (13) 
0 0 0 0 0 

It is seen f rom the expressions presented that the A-pa rame te r s  are  represented  as power ser ies  in 
the Laplace  opera tor  the coefficients of which a re  given as integrals of a function of the l inear  heat  r e s i s -  
tance and the l inear  specific heat.  Any sys tem function of an inhomogeneous heat line, closed by means of 
an a r b i t r a r y  r e s i s t ance ,  can be determined by using A - p a r a m e t e r s .  

The co r rec tnes s  of the express ions  represent ing  the A-pa rame te r s  is confirmed by the solutions we 
obtained on their  basis for  exponential and l inear  heat lines heat- insulated f rom the end (i. e . ,  l ines for  
which both the l inear  heat r es i s t ance  and the l inear  specific heat va ry  along the line by an exponential and a 
l inear  law, respect ively) .  The solutions obtained agreed with solutions existing in the l i t e ra ture .  

Expressions for  the A-pa rame te r s  for  inhomogoneous heat lines written in t e rms  of the general ized 
wave pa ramete r s  of a line, mentioned at the beginning, could also be obtained. 

In order  to demonstra te  theult i l izat ion of the formulas  obtained, let us determine the value of the 
pa rame te r  A for a wall, a cyl inder ,  and a sphere .  

Fo r  the case  of a homogeneous line (wall), the value of the A-pa rame te r  is obtained at once (the 
length of the line is assumed equal to one): 

~ 7  | ~ (sol ore,o) n ~ ch ]/YcL~r to = chz , (14) 
2nl 

n ~O'  

where z = s~-cvo/Xo. 

In the case  of the assignment  of a thermal  perturbat ion on the sur face  of a cylinder (or sphere),  
knowledge of the A-pa ram e te r  is completely sufficient for  the determination of the t empera tu re  at any point 
along the radius of the body under considerat ion.  

Le t  us evaluate the A - p a r a m e t e r  fo r  a cylinder the maximum radius of which is taken equal to one: 

A = t -F a :  § a :  ~ § . . . ,  

a1 =: J" Cl:(x2) j' r l ( x , )dx f l x  2 . 
0 0 

Since the begiaming of the heat line is the cylinder surface,  then the coordinate considered along the 

l ine will pass  through the following values:  1, x t, x 2 . . . . .  0. Then 

0 X2 

' J" (z/2)~ al = cOo2~x ~ 1 1 C~o, a z s = - - - - .  
2Z~oX 1 dx:dx2 4 L o (1!) ~ 

1 

Proceeding in the same manner ,  we obtain 

(z/2) ~ (z/2) ~ 
a 2 s 2 ~  - - - -  a n d  a 3 S  3 ~ - - -  ~ t C .  

(2!) 2 (302 

In other words,  A = I0(z), where I0(z) is the z e r o - o r d e r  B e s s d  function of argument z. 

(15) 
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Now, let  us determine the pa rame te r  A for  a sphere  

0 X~ 

i 1 

1 Coo . z 2 
a 1 = = - ~ ,  alS ~ - - .  

6 ~o 3! 

Proceeding in the same manner  we obtain 

z' z 2~ ~ C shz (16) 
a~s2= ~ . ;  ansn ( 2 n +  1)! and A = 1 + .~.,..~(2n+l)! z 

It  must  be noted that the exact solution of the heat conduction differential equation is not sought fo r  
any inhomogeneous heat l ines but only for  those for  which the l inear  heat r es i s t ance  and l inear  volume 
specific heat functions a re  in ter re la ted  in a definite manner .  These constra ints  a re  absent in the method 
proposed.  

It is evident that knowledge of the A-pa rame te r s  of inhomogeneous heat lines permits  significant ex- 
pansion of the c i rc le  of problems solved by the use of quadrupoles,  which is l imited at this t ime to the analy-  
sis  of homogeneous heat lines [1]. 

NOTATION 

x is the coordinate, m; 
S is the cross-sectional area, m2; 
s is the Laplace operator; 
0) is the angular f requency,  r a d / s e c ;  
?~ is the coefficient of heat conduction, W / m .  ~ 
c v is the volume specific heat,  5 / m  3 �9 ~ 
c I is the l inear  specific heat,  J / m .  ~ 
r 1 is the l inear  heat r e s i s t ance ,  ~ .m.  

1. 
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